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“It is only a paper reactor until the metallurgist tells us whether it can be built 
and from what.” 

 
-  Norman Hilberry, Director, Argonne National Laboratory, 1957 to 1961 

 
 

“Basic phenomena which require attention are changes in dimensions and 
properties…, lower ductility of construction materials when irradiated,...high-
temperature aqueous corrosion of metals and other topics under the heading of 
physical metallurgy....” 

     
-  J. P. Howe, first AIME Nuclear Metallurgy Symposium, 1955  

 
 
 
 
Materials are at the forefront of nuclear power.   It was true for Generation I reactors in 
the 1950’s and will remain true for tomorrow’s Generation III+ and IV reactors. 
 
The nuclear industry presents unique challenges for materials, ranging from 
microstructural processes to long-term component integrity.  The following sections, 
therefore, introduce some of the effects of irradiation on materials, including: 
 
 

• Irradiation Effects on Microstructures 
• Irradiation Effects on Dimensional Stability 
• Irradiation Effects on Mechanical Properties 
• Corrosion Issues in Nuclear Power  
• High-Level Nuclear Waste Storage
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Figure 1: Effect of neutron irradiation on 
the stability of austenite in type 347 
stainless steel. 1 

Irradiation Effects on Microstructures 
 
Changes in mechanical properties and 
dimensional stability in neutron 
irradiated materials is related to 
microstructural changes such as the 
formation of voids, loop, and 
precipitates. 
 
Neutron irradiation can also affect the 
stability of austentite in stainless steel as 
shown in Figure 1.  Irradiation promotes 
the growth of ferrite, with the effect 
increasing with greater levels of cold 
work.  
 
Irradiation can also alter grain boundary 
composition as shown in Figure 2.  In 
general, irradiation can cause an inverse 
Kirkendall segregation in which slow 
diffusing elements (e.g., nickel) enrich 
grain boundaries and faster moving 
solutes (e.g., chromium) are depleted 
from the near-grain boundary regions.2,3    
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Figure 2:  Effect of irradiation on grain boundary composition (300-series austenitic 
stainless steel). 2   
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Figure 3:  Swelling as a function of 
temperature for two EBR-II 316 
stainless subassemblies.4    
 
 
 
Irradiation Effects on Mechanical 
Properties 
 
Neutron irradiation can result in 
increased strength and a corresponding 
decreased toughness as shown in Figures 
4 and 5.  These trends are associated 
with the development of dislocation 
loops, precipitates and voids.2  
Irradiation-induced grain boundary 
compositional changes can also lead to 
brittle, intergranular fracture.9   
 
Helium generated due to nuclear 
transformation reactions can diffuse to 
grain boundaries.   Bubbles can 
subsequently form, especially in 
structures under a tensile load.  This can 
result in helium embrittlement and a 
reduction in creep resistance.10  

 
 
Irradiation Effects on Dimensional 
Stability 
 
Irradiation-induced void formation can 
produce density changes, potentially 
resulting in dimensional changes in 
reactor components.  Swelling has been 
observed in metals (see Figure 3) as well 
as in ceramics.  Mitigation requires 
modifications to material design (e.g., 
alloying, etc.) or selection.5   Creep and 
associated stress relaxation can cause 
unwanted dimensional changes but can 
also relieve stresses due to swelling in 
constrained systems.6     
 
 
 
 

 
 
Figure 4:  Effect of irradiation on yield 
strength of iron and steel.7  (dpa is the 
average number of displacements per 
atom due to irradiation) 
 

The damage regions typical of radiated materials are outlined in Figure 6.  The prevalent 
damage mechanisms under service conditions must be considered to prevent component 
failure.  
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Figure 5:  Irradiation causes a decrease in toughness of welded joint making failure likely 
at higher temperatures. 8 

 
 

 
Figure 6:  Damage mechanisms for metals as a function of temperature.11   
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Figure 7:  Pourbaix diagram for nickel-
based alloy 600 in an aqueous solution 
(300 oC) 12   

 
Corrosion Issues in Nuclear Power  
 
Corrosion-related phenomena remain 
important for material developments.   
Figure 7 presents a Pourbaix diagram for 
a nickel-based alloy, showing internal 
oxidation products observed in stress 
corrosion cracking studies. 
 
Figure 8 highlights the role of irradiation 
in promoting intergranular stress 
corrosion cracking.  Irradiated assisted 
stress corrosion cracking (IASCC) is 
likely related to both irradiation 
hardening and grain boundary 
composition changes mentioned above.  
Additionally, radiation can also affect 
the water chemistry, potentially resulting 
in a more aggressive environment. 14     

 

 
Figure 8:  Effect of radiation dose on percentage of intergranular stress corrosion 
cracking for materials irradiated in boiling water reactors (BWR) and fast breeder 
reactors (FBR) and tested in PWR water. 13     
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Long-term nuclear waste repositories 
will require containment system stability 
for greater than 10,000 years.15,16   As 
such, corrosion studies for candidate 
materials, such as Alloy 22 in Figure 9, 
are critical.   General corrosion, 
hydrogen induced cracking and stress 
corrosion cracking data is being 
extrapolated over the 10,000 year 
specified timeframe based upon 
estimated environmental conditions 
(e.g., ionic species accumulation, 
microbial activity, radiation-induced 
degradation, thermal conditions, etc.). 

 
Figure 9:  General corrosion rate for 
Alloy 22 waste package outer barrier. 15      
 
 

  
 
 
 
High-Level Nuclear Waste Storage 
 

 

Want to Learn More? 
 
Materials Technology@TMS provides an easy opportunity to learn more about materials 
in nuclear applications: 
 

• “Audit” a Course The Digital Resources Center provides links to university 
nuclear materials courses. 

• Review Recommended Resources Recommended resources have been 
compiled by an advisory group of TMS subject matter experts. 

• Self-Study      Conduct an independent search of the links provided with the 
references to this primer and the resources in the Digital Resource Center, 
including the complete proceedings from the 12th International Conference on 
Environmental Degradation of Materials in Nuclear Power Systems. 

• Be “Old School” Purchase a text book or other reference book. 
• Connect with Peers Post a question on the discussion board. 
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